地球を守る環境研究の最前線 ⑨ ――

水の中の微生物は何をしているのか

埼玉県環境科学国際センター 水環境担当 渡邊 圭司

埼玉県環境科学国際センターは、「試験研究」「情報発信」「国際貢献」「環境学習」を4つの柱と する環境科学の総合的中核機関です。また、令和4年度からは研究成果の社会実装化を目指した取 り組みも進めています。本連載では、社会実装化に繋がる研究を紹介します。

1. 微生物について

微生物に明確な定義はありませんが、一般的に は人間の目で見えない生物のことを指します。大 きさは、1 マイクロメートル(μm:1mmの 1.000 分 の1)程度から数百㎞で、原生動物、細菌、菌類(カ ビ、キノコ、酵母)、古細菌、微細藻類やウイルス などが含まれます。未解明な部分が多いウイルス を除くと、環境中には細菌が最も数多く存在して います。

細菌は、海水中 1ml当たり 1万から 100万細胞、 土壌 1g 当たり 1 億から 100 億細胞が生息してい ると言われています¹⁾。埼玉県内の河川水を顕微 鏡で観察してみると、おおむね 1ml 当たり 100万 から 2,000 万細胞の細菌が生息していました²⁾。 本レポートでは、通常は目に見えないためにあま りなじみがない微生物について、"水の中の微生 物は何をしているのか"というテーマで、特に細 菌にフォーカスをあてて紹介します。

2. 水の中の細菌について

水の中に生息している細菌は、微粒子や微細藻 類の表面に付着したり、細胞同士が集まって集合 体を形成している付着性の細菌と、他のものに付 着せず、また集合体も作らずに、1つの細胞で水 中をプカプカと浮いて自由生活している浮遊性の 細菌の2種類に大別されます。

一般的に、付着性の細菌は細胞のサイズが大き く、浮遊性の細菌は細胞のサイズが小さいという 特徴があります。これらの細菌は、水の中の有機 物、窒素やリンなどの汚れの原因となる物質の分 解や他の物質への変換など、重要な役割を担って いると考えられています。しかし、これらの作用 を持つ細菌の種類や分解メカニズムなどは、ほと んど解明されていません。なぜなら、自然環境中 から分離できている細菌はわずか数パーセントに すぎず、環境中に生息する大部分(90数パーセン ト)の細菌は何をしているのかよくわからないか らです。細菌の持つ能力を知るためには、環境中 から分離して、培養して調べる必要があります。

3. 河川から分離した細菌からもたらされた 新たな発見

河川や湖沼の水を孔径 0.7ょmのフィルターでろ 過することで、細胞が大きい細菌(付着性の細菌) を除去し、細胞が小さい細菌(浮遊性の細菌)だ けに分けることができます。

私たちは、このろ液を、寒天培地(細菌の生育 に必要な栄養源を寒天で固めたもの)に塗り広げ 培養する方法を考案しました。この方法は、寒天 培地上で生育したコロニーと呼ばれる1種類の細 菌の集まり(1 株)を得ることができ、これまで に河川や湖沼から合計で880株を超える浮遊性の 細菌の分離に成功しました。

それらの菌株について、遺伝子解析による 種の同定を行ったところ、新種に該当する多 くの細菌が含まれており、埼玉県の小山川 で 見 つ け た Fluviibacter phosphoraccumulans SHINM1, Flvobacterium ammonificans SHINM13, Flavobacterium ammoniigenes GENT5 の 3 菌株が、 新種の細菌として国際委員会 (ICSP) に認定さ れました (図1)。特に、F. phosphoraccumulans は、水中のリン酸をポリリン酸(リン酸の集合 体)として細胞内に蓄積する能力を持つことが新 たにわかりました。また、F. ammonificans & F. ammoniigenes が、水中の有機物に含まれる窒素成 分を分解し、アンモニアを生産していることも発 見しました。

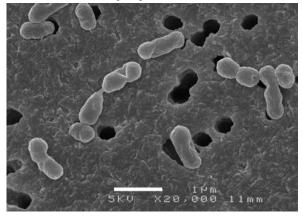
微生物が有機物を分解してアンモニアを生産す る現象は、無機化と呼ばれ、光合成を行う生物(植 物や微細藻類など)の栄養源を再生産する、自然 生態系における重要なステップです。この無機化 に関与する微生物の種類やメカニズムは、ほとん どわかっていませんでしたが、当センターの研究 により、その一端が明らかとなりました。

4. おわりに

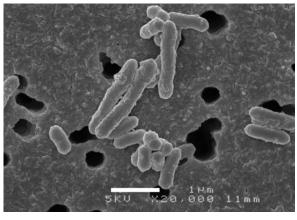
淡水に生息する細菌が、細胞内に蓄積したリン や有機物から生産したアンモニアを取り出して、 うまく利用できないものでしょうか?

リンは主に植物を育てる際の肥料として使用さ れますが、日本ではリン鉱石のほとんどを輸入に 頼っているため、リンの確保は国家としての重要 な課題です。リン鉱石を輸入できない場合には、 食糧問題につながるリスクが非常に高くなってし まいます。また、アンモニアは水素と同様にクリー ンな次世代燃料として現在注目されています。

将来的には、環境研究で得た知見を資源やエネ ルギーの問題解決に発展できるよう、広い視野で 研究を進め、様々な分野の方々と連携することが 重要です。


1) 日本微生物生態学会 教育研究部会 編著 (2004): 微生物生態学入門 p. 3. 2) 渡邊圭司 (2016): 埼玉県内河川の浮遊細菌に関する研究, 環境科学国際セン ターニュースレター, 33 号, pp.3-4.

● 渡邊 圭司 プロフィール


専門は微生物生態学、これまで湖沼、河川、海洋、土壌、葉っ ぱの上や空に生息する微生物の生態について調べてきました。

特に淡水に生息する細菌については長い期間研究に携わっ ております。これまでは、微生物を介した自然の仕組みを理 解することに注力して参りましたが、今後は、それらの知見 を人の役に立つことにも発展できるよう、研究を進めて行き たいと考えております。

① Fluviibacter phosphoraccumulans SHINM1

② Flvobacterium ammonificans SHINM13

(3) Flavobacterium ammoniigenes GENT5

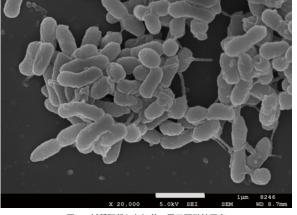


図1 新種記載した細菌の電子顕微鏡写真 (白いバーは 1 µm の大きさを表している)